Estimating lift from wake velocity data in flapping flight

Author:

Wang ShizhaoORCID,He GuoweiORCID,Liu TianshuORCID

Abstract

The application of the Kutta–Joukowski (KJ) theorem to estimating the lift of a flying animal based on wake velocity fields often leads to significant underprediction of the lift, which is known as the wake momentum paradox. This work attempts to answer the puzzling question on whether the KJ theorem is legitimate in its use for complex viscous unsteady wakes generated by flapping wings. The limitations in applying the KJ theorem to flapping wings are quantitatively examined through numerical simulations of viscous incompressible flows over three flapping wing models. The three flapping wing models studied in this work are a flapping wing with a fixed wingspan, a flapping wing with a dynamically changing wingspan and a dihedral flapping wing. The KJ theorem fails to give a satisfactory prediction of the time-averaged lift unless an effective span length is correctly computed. We propose a wake-sectional Kutta–Joukowski (WS-KJ) model to predict the time-averaged lift, where the effective span length is computed based on the time-averaged distance between the streamwise vorticity centroids in the right and left half sides of the Trefftz plane. The WS-KJ model incorporates the spatial evolutionary effects of the complex vortex structures in the wake and significantly improves the prediction of the time-averaged lift. The physical foundation for such improvement is explored. In addition, the time-dependent amplitude and phase changes of the unsteady lift are discussed as the fluid acceleration effect.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3