Pseudophase change effects in turbulent channel flow under transcritical temperature conditions

Author:

Kim Kukjin,Hickey Jean-PierreORCID,Scalo Carlo

Abstract

We have performed direct numerical simulations of compressible turbulent channel flow using R-134a as a working fluid in transcritical temperature ranges ($\unicode[STIX]{x0394}T=5$, 10 and 20 K, where $\unicode[STIX]{x0394}T$ is top-to-bottom temperature difference) at supercritical pressure. At these conditions, a pseudophase change occurs at various wall-normal locations within the turbulent channel from $y_{pb}/h=-0.23$ ($\unicode[STIX]{x0394}T=5$  K) to 0.89 ($\unicode[STIX]{x0394}T=20$  K), where $h$ is the channel half-height and $y=0$ the centreplane position. Increase in $\unicode[STIX]{x0394}T$ also results in increasing wall-normal gradients in the semi-local friction Reynolds number. Classical, compressible scaling laws of the mean velocity profile are unable to fully collapse real fluid effects in this flow. The proximity to the pseudotransitioning layer inhibits turbulent velocity fluctuations, while locally enhancing the temperature and density fluctuation intensities. Probability distribution analysis reveals that the sheet of fluid undergoing pseudophase change is characterized by a dramatic reduction in the kurtosis of density fluctuations, hence becoming thinner as $\unicode[STIX]{x0394}T$ is increased. Instantaneous visualizations show dense fluid ejections from the pseudoliquid viscous sublayer, some reaching the channel core, causing positive values of density skewness in the respective buffer layer region (vice versa for the top wall) and an impoverishment of the turbulent flow structure population near pseudotransitioning conditions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3