Heated transcritical and unheated non-transcritical turbulent boundary layers at supercritical pressures

Author:

Kawai SoshiORCID

Abstract

Nominally zero-pressure-gradient fully developed flat-plate turbulent boundary layers with heated and unheated isothermal walls at supercritical pressures are studied by solving the full compressible Navier–Stokes equations using direct numerical simulation. With a heated isothermal wall, the wall temperature sets such that the flow temperature varies through the pseudo-critical temperature, and thus pseudo-boiling phenomena occur within the boundary layers. The pseudo-boiling process induces strongly nonlinear real-fluid effects in the flow and interacts with near-wall turbulence. The peculiar abrupt density variations through the pseudo-boiling process induce significant near-wall density fluctuations $\sqrt{\overline{\unicode[STIX]{x1D70C}^{\prime }\unicode[STIX]{x1D70C}^{\prime }}}/\overline{\unicode[STIX]{x1D70C}}\approx 0.4{-}1.0$ within the heated transcritical turbulent boundary layers. The large near-wall density fluctuations induce a turbulent mass flux $\unicode[STIX]{x1D70C}^{\prime }u_{i}^{\prime }$, and the turbulent mass flux amplifies the Favre-averaged velocity fluctuations $u_{i}^{\prime \prime }$ in the near-wall predominant structures of streamwise low-speed streaks that are associated with the ejection (where $u^{\prime \prime }<0$ and $v^{\prime \prime }>0$), while reducing the velocity fluctuations in the high-speed streaks associated with the sweep ($u^{\prime \prime }>0$ and $v^{\prime \prime }<0$). Although the near-wall low-speed and high-speed streak structures dominate the Reynolds-shear-stress generation, the energized Favre-averaged velocity fluctuations in the low-speed streaks enhance both the mean-density- and density-fluctuation-related Reynolds shear stresses ($-\overline{\unicode[STIX]{x1D70C}}\overline{u^{\prime \prime }v^{\prime \prime }}$ and $-\overline{\unicode[STIX]{x1D70C}^{\prime }u^{\prime \prime }v^{\prime \prime }}$) in the ejection event and, as a result, alter the Reynolds-shear-stress profile. The large density fluctuations also alter the near-wall viscous-stress profile and induce a near-wall convective flux $-\overline{\unicode[STIX]{x1D70C}}\widetilde{u}\widetilde{v}$ (due to non-zero $\widetilde{v}$). The changes in the contributions in the stress-balance equation result in a failure of existing velocity transformations to collapse to the universal law of the wall. The large density fluctuations also greatly contribute to the turbulent kinetic energy budget, and especially the mass flux contribution term becomes noticeable as one of the main positive terms. The unheated non-transcritical turbulent boundary layers show a negligible contribution of the real-fluid effects, and the turbulence statistics agree well with the statistics of an incompressible constant-property turbulent boundary layer with a perfect-gas law.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3