Abstract
We present an idealized study of rotating stratified wave turbulence in a two-dimensional vertical slice model of the Boussinesq equations, focusing on the peculiar case of equal Coriolis and buoyancy frequencies. In this case the fully nonlinear fluid dynamics can be shown to be isotropic in the vertical plane, which allows the classical methods of isotropic turbulence to be applied. Contrary to ordinary two-dimensional turbulence, here a robust downscale flux of total energy is observed in numerical simulations that span the full parameter regime between Ozmidov and forcing scales. Notably, this robust downscale flux of the total energy does not hold separately for its various kinetic and potential components, which can exhibit both upscale and downscale fluxes, depending on the parameter regime. Using a suitable extension of the classical Kármán–Howarth–Monin equation, exact expressions that link third-order structure functions and the spectral energy flux are derived and tested against numerical results. These expressions make obvious that even though the total energy is robustly transferred downscale, the third-order structure functions are sign indefinite, which illustrates that the sign and the form of measured third-order structure functions are both crucially important in determining the direction of the spectral energy transfer.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献