Super-resolution reconstruction of turbulent flows with machine learning

Author:

Fukami Kai,Fukagata KojiORCID,Taira KunihikoORCID

Abstract

We use machine learning to perform super-resolution analysis of grossly under-resolved turbulent flow field data to reconstruct the high-resolution flow field. Two machine learning models are developed, namely, the convolutional neural network (CNN) and the hybrid downsampled skip-connection/multi-scale (DSC/MS) models. These machine learning models are applied to a two-dimensional cylinder wake as a preliminary test and show remarkable ability to reconstruct laminar flow from low-resolution flow field data. We further assess the performance of these models for two-dimensional homogeneous turbulence. The CNN and DSC/MS models are found to reconstruct turbulent flows from extremely coarse flow field images with remarkable accuracy. For the turbulent flow problem, the machine-leaning-based super-resolution analysis can greatly enhance the spatial resolution with as little as 50 training snapshot data, holding great potential to reveal subgrid-scale physics of complex turbulent flows. With the growing availability of flow field data from high-fidelity simulations and experiments, the present approach motivates the development of effective super-resolution models for a variety of fluid flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3