Network structure of two-dimensional decaying isotropic turbulence

Author:

Taira Kunihiko,Nair Aditya G.,Brunton Steven L.

Abstract

The present paper reports on our effort to characterize vortical interactions in complex fluid flows through the use of network analysis. In particular, we examine the vortex interactions in two-dimensional decaying isotropic turbulence and find that the vortical-interaction network can be characterized by a weighted scale-free network. It is found that the turbulent flow network retains its scale-free behaviour until the characteristic value of circulation reaches a critical value. Furthermore, we show that the two-dimensional turbulence network is resilient against random perturbations, but can be greatly influenced when forcing is focused towards the vortical structures, which are categorized as network hubs. These findings can serve as a network-analytic foundation to examine complex geophysical and thin-film flows and take advantage of the rapidly growing field of network theory, which complements ongoing turbulence research based on vortex dynamics, hydrodynamic stability, and statistics. While additional work is essential to extend the mathematical tools from network analysis to extract deeper physical insights of turbulence, an understanding of turbulence based on the interaction-based network-theoretic framework presents a promising alternative in turbulence modelling and control efforts.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3