Author:
de la Bretèche R.,Tenenbaum G.
Abstract
AbstractFor natural integer n, let Dn denote the random variable taking the values log d for d dividing n with uniform probability 1/τ(n). Then t↦ℙ(Dn≤nt) (0≤t≤1) is an arithmetic process with respect to the uniform probability over the first N integers. It is known from previous works that this process converges to a limit law and that the same holds for various extensions. We investigate the generalized moments of arbitrary orders for the limit laws. We also evaluate the mean value of the two-dimensional distribution function ℙ(Dn≤nu, D{n/Dn}≤nv).
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献