Abstract
AbstractLet
$k \geqslant 2$
be an integer. We prove that factorisation of integers into k parts follows the Dirichlet distribution
$\mathrm{Dir}\left({1}/{k},\ldots,{1}/{k}\right)$
by multidimensional contour integration, thereby generalising the Deshouillers–Dress–Tenenbaum (DDT) arcsine law on divisors where
$k=2$
. The same holds for factorisation of polynomials or permutations. Dirichlet distribution with arbitrary parameters can be modelled similarly.
Publisher
Cambridge University Press (CUP)
Reference22 articles.
1. [7] Elboim, D. and Gorodetsky, O. . Multiplicative arithmetic functions and the generalised Ewens measure. ArXiv: 1909.00601 (2022).
2. [9] Granville, A. . The anatomy of integers and permutations. preprint (2008), available at: https://dms.umontreal.ca/andrew/PDF/Anatomy.pdf.
3. Bivariate Beta distribution and multiplicative functions
4. Sur les processus arithmétiques liés aux diviseurs