Radiocarbon Dating of Calcined Bones: Where Does the Carbon Come from?

Author:

Zazzo A,Saliège J-F,Person A,Boucher H

Abstract

Over the past decade, radiocarbon dating of the carbonate contained in the mineral fraction of calcined bones has emerged as a viable alternative to dating skeletal remains in situations where collagen is no longer present. However, anomalously low δ13C values have been reported for calcined bones, suggesting that the mineral fraction of bone is altered. Therefore, exchange with other sources of carbon during heating cannot be excluded. Here, we report new results from analyses on cremated bones found in archaeological sites in Africa and the Near East, as well as the results of several experiments aiming at improving our understanding of the fate of mineral and organic carbon of bone during heating. Heating of modern bone was carried out at different temperatures, for different durations, and under natural and controlled conditions, and the evolution of several parameters (weight, color, %C, %N, δ13C value, carbonate content, crystallinity indexes measured by XRD and FTIR) was monitored. Results from archaeological sites confirm that calcined bones are unreliable for paleoenvironmental and paleodietary reconstruction using stable isotopes. Experimental results suggest that the carbon remaining in bone after cremation likely comes from the original inorganic pool, highly fractionated due to rapid recrystallization. Therefore, its reliability for 14C dating should be seen as close to that of tooth enamel, due to crystallographic properties of calcined bones.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3