Dating Materials in Good Archaeological Contexts: The Next Challenge for Radiocarbon Analysis

Author:

Boaretto Elisabetta

Abstract

Radiocarbon dating has had an enormous impact on archaeology. Most of the dates are obtained using charred materials and, to a lesser extent, collagen from bones. The contexts in which charred materials and bones are found are often, however, not secure. There are 3 other datable materials that are usually in secure contexts: plaster/mortar, phytoliths, and the organic material in the ceramic of whole vessels. The plaster/mortar of walls and floors are often in very secure contexts. Phytoliths are abundant in archaeological sites and in some situations form well-defined surfaces. Whole vessels are usually found in secure contexts and their typologies are indicative of a specific period. Dating each of these materials has proved to be difficult, and solving these technical problems represents major future challenges for the 14C community. The effective use of charcoal and bone collagen for dating can also be improved by paying careful attention to the micro-contexts in which they are found, such as in clusters or as part of well-defined features. Pre-screening to identify the best preserved material can also contribute to improving the accuracy of the dates obtained. A general objective should be to have an assessment of the quality of the material to be dated so that the potentially invaluable information from outliers can be exploited.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

Reference32 articles.

1. Geoarchaeology in an urban context: The uses of space in a Phoenician monumental building at Tel Dor (Israel)

2. Structural Characterization of Charcoal Exposed to High and Low Ph: Implications for 14C Sample Preparation and Charcoal Preservation

3. Modern and fossil charcoal: aspects of structure and diagenesis

4. The Third International Radiocarbon Intercomparison (TIRI) and the Fourth International Radiocarbon Intercomparison (FIRI), 1990–2002. Results, analyses, and conclusions;Scott;Radiocarbon,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3