Author:
Rebollo N R,Cohen-Ofri I,Popovitz-Biro R,Bar-Yosef O,Meignen L,Goldberg P,Weiner S,Boaretto E
Abstract
Chemical and structural similarities between poorly preserved charcoal and its contaminants, as well as low radiocarbon concentrations in old samples, complicate 14C age determinations. Here, we characterize 4 fossil charcoal samples from the late Middle Paleolithic and early Upper Paleolithic strata of Kebara Cave, Israel, with respect to the structural and chemical changes that occur when they are subjected to the acid-base-acid (ABA) treatment. Differential thermal analysis and TEM show that acid treatment disrupts the structure, whereas alkali treatment results in the reformation of molecular aggregates. The major changes are ascribed to the formation of salt bridges at high pH and the disruption of the graphite-like crystallites at low pH. Weight losses during the treatments are consistently greater for older samples, implying that they are less well preserved. Based on the changes observed in vitro due to pH fluctuations, various methods for removing contamination, as well as a mechanism for preferential preservation of charcoal in nature, are proposed.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Archeology
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献