Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments

Author:

Levitus Marcia,Ranjit Suman

Abstract

AbstractThe breakthroughs in single molecule spectroscopy of the last decade and the recent advances in super resolution microscopy have boosted the popularity of cyanine dyes in biophysical research. These applications have motivated the investigation of the reactions and relaxation processes that cyanines undergo in their electronically excited states. Studies show that the triplet state is a key intermediate in the photochemical reactions that limit the photostability of cyanine dyes. The removal of oxygen greatly reduces photobleaching, but induces rapid intensity fluctuations (blinking). The existence of non-fluorescent states lasting from milliseconds to seconds was early identified as a limitation in single-molecule spectroscopy and a potential source of artifacts. Recent studies demonstrate that a combination of oxidizing and reducing agents is the most efficient way of guaranteeing that the ground state is recovered rapidly and efficiently. Thiol-containing reducing agents have been identified as the source of long-lived dark states in some cyanines that can be photochemically switched back to the emissive state. The mechanism of this process is the reversible addition of the thiol-containing compound to a double bond in the polymethine chain resulting in a non-fluorescent molecule. This process can be reverted by irradiation at shorter wavelengths. Another mechanism that leads to non-fluorescent states in cyanine dyes is cis–trans isomerization from the singlet-excited state. This process, which competes with fluorescence, involves the rotation of one-half of the molecule with respect to the other with an efficiency that depends strongly on steric effects. The efficiency of fluorescence of most cyanine dyes has been shown to depend dramatically on their molecular environment within the biomolecule. For example, the fluorescence quantum yield of Cy3 linked covalently to DNA depends on the type of linkage used for attachment, DNA sequence and secondary structure. Cyanines linked to the DNA termini have been shown to be mostly stacked at the end of the helix, while cyanines linked to the DNA internally are believed to partially bind to the minor or major grooves. These interactions not only affect the photophysical properties of the probes but also create a large uncertainty in their orientation.

Publisher

Cambridge University Press (CUP)

Subject

Biophysics

Cited by 367 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3