Avalanche forecasting — an expert system approach

Author:

Schweizer Jürg,Föhn Paul M. B.

Abstract

AbstractAvalanche forecasting for a given region is still a difficult task involving great responsibility. Any tools assisting the expert in the decision-making process are welcome. However, an efficient and successful tool should meet the needs of the forecaster. With this in mind, two models, were developed using a commercially available software: CYBERTEK-COGENSYSTM, a judgment processor for inductive decision-making–a principally data-based expert system. Using weather, snow and snow-cover data as input parameters, the models evaluate for a region the degree of avalanche hazard, the aspect and altitude of the most dangerous slopes. The output result is based on the snow-cover stability. The new models were developed and have been tested in the Davos region (Swiss Alps) for several years. To rate the models, their output is compared to the a posteriori verified hazard. the first model is purely data-based. Compared to other statistical models, the differences are: more input information about the snow cover from snow profiles and Rutschblock tests, the specific method to search for similar situations, the concise output result and the knowledge base that includes the verified degree of avalanche hazard. The performance is about 60%. The second, more-refined model, is both data- and rule-based. It tries to model the decision-making process of a pragmatic expert and has a performance of about 70%, which is comparable to the accuracy of the public warning.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3