Combining modelled snowpack stability with machine learning to predict avalanche activity

Author:

Viallon-Galinier Léo,Hagenmuller PascalORCID,Eckert Nicolas

Abstract

Abstract. Predicting avalanche activity from meteorological and snow cover simulations is critical in mountainous areas to support operational forecasting. Several numerical and statistical methods have tried to address this issue. However, it remains unclear how combining snow physics, mechanical analysis of snow profiles and observed avalanche data improves avalanche activity prediction. This study combines extensive snow cover and snow stability simulations with observed avalanche occurrences within a random forest approach to predict avalanche situations at a spatial resolution corresponding to elevations and aspects of avalanche paths in a given mountain range. We develop a rigorous leave-one-out evaluation procedure including an independent evaluation set, confusion matrices and receiver operating characteristic curves. In a region of the French Alps (Haute-Maurienne) and over the period 1960–2018, we show the added value within the machine learning model of considering advanced snow cover modelling and mechanical stability indices instead of using only simple meteorological and bulk information. Specifically, using mechanically based stability indices and their time derivatives in addition to simple snow and meteorological variables increases the probability of avalanche situation detection from around 65 % to 76 %. However, due to the scarcity of avalanche events and the possible misclassification of non-avalanche situations in the training dataset, the predicted avalanche situations that are really observed remains low, around 3.3 %. These scores illustrate the difficulty of predicting avalanche occurrence with a high spatio-temporal resolution, even with the current data and modelling tools. Yet, our study opens perspectives to improve modelling tools supporting operational avalanche forecasting.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3