Two Models for Estimating Climate‒Glacier Relationships in the North Cascades, Washington, U.S.A.

Author:

Tangborn Wendell

Abstract

AbstractTwo models based on standard observations of precipitation, temperature, and run-off at low-altitude weather and gaging stations have been devised to calculate annual glacier balances in the North Cascades of Washington. The predicted glacier balances of the Thunder Creek basin glaciers, determined by a run-off–precipitation (RP) model during the 1920–74 period, are compared with balances predicted by a precipitation–temperature (PT) model for the same period. Annual balances determined by the PT model are also compared with balances measured by field techniques at South Cascade Glacier since 1958. In the PT model, winter snow accumulation (winter balance) is determined by winter (October–April) precipitation observed at the Snoqualmie Falls weather station. Summer (May–September) ablation (summer balance) on the glaciers is estimated by a technique which utilizes maximum and minimum air temperatures, also observed at Snoqualmie Falls. Ablation calculations incorporate summer cloud cover as a variable by using a relationship between cloud cover and the range in daily maximum and minimum air temperatures.Annual mass changes for the 1884–1974 period in both South Cascade Glacier and the Thunder Creek glaciers were reconstructed by utilizing the PT model. The fluctuations in glacier mass during this period generally agree with historical observations and show that a definite change in glacier activity from marked recession to stability or an advancing state occurred about 1945. During the 1900–45 period, South Cascade Glacier lost mass at a rate of 1.4 m per year and the Thunder Creek glaciers (which are at a higher altitude) at 1.1 m per year.These models suggest that the relationship of glacier mass balance to precipitation and temperature is a very sensitive one. It appears from these studies that a decrease in summer air temperature of just over 0.5 deg or an increase in winter accumulation of slightly more than 10% (350 mm) from the 1920–74 average would cause these glaciers to grow continuously.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3