Glaciers of the Washington Cascade and Olympic Mountains; Their Present Activity and its Relation to Local Climatic Trends

Author:

Hubley Richard C.

Abstract

AbstractBetween 1953 and 1955, 73 glaciers in the Olympic and Cascade Mountains of Washington State have been investigated to determine their present activity. 50 of these glaciers are now advancing at rates from 3 to 100 m. or more per annum. Of the remaining 23, 22 glaciers either demonstrate clear evidence of increasing thickness, or have remained so heavily snow-covered at the end of the ablation season that it has not been possible to locate their limits.The present glacier growth, which appears to have started about 12 years ago, represents a radical change from conditions during the previous 20 years when glaciers of the Olympics and Cascades without exception were shrinking rapidly. An analysis of local climatic data demonstrates a present trend toward a cooler, wetter climate in western Washington. The ten year running mean annual temperature at Tatoosh Island off the Washington coast has decreased approximately o 8° C. from the period 1934–1943 to the period 1945–1954. In the same interval of time the ten year running mean annual precipitation at Tatoosh has increased about 38 cm., and during the last decade has reached its highest value since the period 1898–1907.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differences in the transient responses of individual glaciers: a case study of the Cascade Mountains of Washington State, USA;Journal of Glaciology;2022-01-11

2. North Cascade Range, Washington USA;Recent Climate Change Impacts on Mountain Glaciers;2016-11-04

3. Individual Glacier Behavior;Climate Driven Retreat of Mount Baker Glaciers and Changing Water Resources;2015

4. Terminus Response to Climate Change;Climate Driven Retreat of Mount Baker Glaciers and Changing Water Resources;2015

5. Introduction to Mount Baker and the Nooksack River Watershed;Climate Driven Retreat of Mount Baker Glaciers and Changing Water Resources;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3