Thermo-mechanically coupled ice-sheet response — cold, polythermal, temperate

Author:

Hutter Kolumban

Abstract

AbstractClassical mixture concepts are the appropriate vehicle for describing the dynamics of ice masses containing some water. We review and derive, respectively, the theoretical formulations of cold, polythermal and temperate ice masses, emphasize the peculiarities of the model equations and point to difficulties that were encountered with the proposed models. The focus is both on the adequate physical motivation of the models and the consistency of their mathematical representation. The paper also has a tutorial character.As usual, cold ice is treated as a single-component incompressible heat-conducting viscous fluid, while two different models are presented for temperate ice. When it arises in a polythermal ice mass, the water content is small and a simple diffusive model for the moisture content suffices. This diffusive model is further simplified by taking its appropriate limit, when the moisture diffusivity tends to zero. Temperate ice in a wholly temperate — Alpine — glacier is treated as a two-phase flow problem, i.e. the momentum-balance laws of both constituents ice and water are properly accounted for. Such Darcy-type models are suggested because the water arises in a greater proportion; so its dynamic role can no longer be ignored.The constituent ice is treated as an incompressible non-linearly viscous isotropic body with constitutive properties similar to those of cold ice. The interstitial water is a density-preserving ideal or perfect fluid. The two interact with an interaction force that is proportional to the “porosity” and the seepage velocity. Internal melting that arises will lead to a generalization of the familiar Darcy law.When water is present, the boundary and transition conditions across internal singular surfaces take special, more complicated forms and involve statements on drainage to the base. These conditions are also discussed in detail.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3