Modes of Operation of Thermo-Mechanically Coupled Ice Sheets

Author:

Hindmarsh Richard C.A.,Boulton Geoffrey S.,Hutter Kolumban

Abstract

A dimensionless model of thermo-mechanically coupled ice sheets is used to analyse the operation of the system. Three thermal processes are identified: (i) dissipation, having a maximum time-scale of thousands of years; (ii) advection, having a time-scale of tens of thousands of years; and (iii) conduction, having a time-scale of 100000 years. Kinematical processes occur on two time-scales: (i) a marginal advective time-scale of thousands of years; and (ii) a diffusive time-scale of tens of thousands of years dominant in the divide area.The coupling with the temperature field in the bed produces fluctuations to the depth of a few kilometres, which means that horizontal conduction in the bed can be ignored except perhaps in the marginal area. The thermal inertia of the bed could produce significant fluctuations in the geothermal heat gradient.The operation of the thermo-mechanically coupled system is explored with a time-dependent thermo-mechanically coupled numerical algorithm. Dependence of the basal friction on temperature is introduced heuristically, and an enthalpy method is used to represent the effect of latent heat. The marginal area is shown to be dissipation-driven, and always reaches melting point. The divide area can show two modes of behaviour: a warm-based mode where the ice sheet is thin, and a cold-based mode where the ice sheet is thick. Which mode operates depends upon the applied temperature field and the amount of heat conducted from the bed.Calculations where sliding is limited were not found to be possible owing to problems with the reduced model which resulted in a violation of the approximation conditions at the margin. Cases which did work required a substantial sliding component; as a result, a significant coupling between geometry and temperature can only be demonstrated when sliding is made temperature-dependent.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3