Author:
Noor-ul-Ane M.,Ali Mirhosseini M.,Crickmore N.,Saeed S.,Noor I.,Zalucki M.P.
Abstract
AbstractHabrobracon hebetor (Say) is a parasitoid of various Lepidoptera including Helicoverpa armigera (Hübner), a key pest of different crops and vegetables. The development of both H. armigera and H. hebetor were simultaneously evaluated against a wide range of constant temperatures (10, 15, 17.5, 20, 25, 27.5, 30, 35, 37.5 and 40 °C). Helicoverpa armigera completed its development from egg to adult within a temperature range of 17.5–37.5 °C and H. hebetor completed its life cycle from egg to adult within a temperature range of 15–40 °C. Based on the Ikemoto and Takai model the developmental threshold (To) and thermal constant (K) to complete the immature stages, of H. armigera were calculated as 11.6 °C and 513.6 DD, respectively, and 13 °C and 148 DD, respectively, for H. hebetor. Analytis/Briere-2 and Analytis/Briere-1 were adjudged the best non-linear models for prediction of phenology of H. armigera and H. hebetor, respectively and enabled estimation of the optimum (Topt) and maximum temperature (Tmax) for development with values of 34.8, 38.7, 36.3, and 43 °C for host and the parasitoid, respectively. Parasitisation by H. hebetor was maximal at 25 °C but occurred even at 40 °C. This study suggests although high temperature is limiting to insects, our estimates of the upper thermal limits for both species are higher than previously estimated. Some biological control of H. armigera by H. hebetor may persist in tropical areas, even with increasing temperatures due to climate change.
Publisher
Cambridge University Press (CUP)
Subject
Insect Science,Agronomy and Crop Science,General Medicine