Modeling Temperature-Dependent Development Rate in Insects and Implications of Experimental Design

Author:

Régnier Baptiste1ORCID,Legrand Judith2,Rebaudo François1ORCID

Affiliation:

1. Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France

2. Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France

Abstract

Abstract Characterizing the temperature-dependent development rate requires empirical data acquired by rearing individuals at different temperatures. Many mathematical models can be fitted to empirical data, making model comparison a mandatory step, yet model selection practices widely vary. We present guidelines for model selection using statistical criteria and the assessment of biological relevance of fits, exemplified throughout a Lepidoptera pest dataset. We also used in silico experiments to explore how experimental design and species attributes impact estimation accuracy of biological traits. Our results suggested that the uncertainty in model predictions was mostly determined by the rearing effort and the variance in development times of individuals. We found that a higher number of tested temperatures instead of a higher sample size per temperature may lead to more accurate estimations of model parameters. Our simulations suggested that an inappropriate model choice can lead to biased estimated values of biological traits (defined as attributes of temperature dependent development rate, i.e., optimal temperature for development and critical thresholds), highlighting the need for standardized model selection methods. Therefore, our results have direct implications for future studies on the temperature-dependent development rate of insects.

Funder

French National Research Agency

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3