DNA barcoding of large oak-living cerambycids: diagnostic tool, phylogenetic insights and natural hybridization between Cerambyx cerdo and Cerambyx welensii (Coleoptera: Cerambycidae)

Author:

Torres-Vila L.M.ORCID,Bonal R.

Abstract

AbstractThree large saproxylic cerambycids with different pest/legal status co-occur in the Iberian oak woodlands, Cerambyx welensii (Cw), Cerambyx cerdo (Cc) and Prinobius myardi (Pm): Cw is an emerging pest, Cc is a protected but sometimes harmful species and Pm is a secondary/minor pest. A precise taxonomic diagnosis is necessary for research, management or protection purposes, but may be problematic mainly because Cw and Cc larvae are morphologically indistinguishable. To resolve this constraint, we genotyped adults, larvae and eggs collected over a wide geographical range using the mitochondrial barcoding of the cytochrome c oxidase subunit I (COI). A Neighbour-Joining tree phylogram revealed three distinct clusters corresponding to Cw, Cc and Pm. We further first sequenced for Cw and Cc two mitochondrial (12S rRNA and 16S rRNA) and one nuclear (28S rRNA) gene fragments. For the first two genes, interspecific divergence was lower than in COI, and for the 28S (lower mutation rate), the two species shared identical haplotypes. Two approaches for species delimitation (General Mixed Yule Coalescent (GMYC), Barcode Index Number (BIN)) confirmed the species distinctiveness of Cc and Cw. The Bayesian COI gene tree showed a remarkable genetic divergence between Cc populations from Iberia and the rest of Europe. Such divergence has relevant taxonomic connotations and stresses the importance of a wide geographical scale sampling for accurate DNA barcoding species identification. Incongruities between morphology/lineage and COI barcodes in some individuals revealed natural hybridization between Cw and Cc. Natural hybridization is important from a phylogenetic/evolutionary perspective in these cerambycids, but the prevalence of (and the behavioural/ecological factors involved in) interspecific cross-breeding remain to be investigated.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3