Female delayed mating has a limited impact on the reproductive output of Cerambyx welensii, a synovigenic longhorn beetle

Author:

Torres‐Vila Luis M.1ORCID

Affiliation:

1. Servicio de Sanidad Vegetal, Consejería de Agricultura GyDS, Junta de Extremadura Mérida, Badajoz Spain

Abstract

AbstractIncreased female age at mating is considered a detrimental factor on reproductive output and fitness in insects, even if the impact is rather species specific. The effect of delayed mating on reproductive output has been widely studied in pest species controlled with mating disruption, as if the method is not fully effective in suppressing matings, it could still delay them, limiting female fitness and pest damage. Female mating delay, however, may also occur in natural habitats without invoking mating disruption. We studied the effect of female delayed mating in Cerambyx welensii (Küster) (Coleoptera: Cerambycidae), an oak‐living sapro‐xylophagous longhorn beetle considered a critical factor in oak decline. Several life history and ecological traits may potentially delay mating, including low abundance, (re)colonisation processes, sexual communication channel, host‐produced kairomones, operational sex ratio, reproductive interference and adverse weather conditions. We conducted laboratory tests to assess the impact of mating delays (0‐, 10‐, 20‐ and 30‐day post‐emergence) on reproductive output. Data showed that mating delay until at least 20 days of age had a limited effect on mating success, lifetime fecundity, longevity and fertility. The daily fecundity pattern depended on mating delay, and virgin females showed ovarian retention. We conclude that C. welensii females have evolved physiological adaptations to overcome mating delays and optimise fitness. We discuss our results from an evolutionary perspective, considering specifically the risk of early predation and egg‐laying time limitation. We hypothesise that unpredictable recurrent stochastic variation in male availability could act as an additional driver selecting for synovigeny in this longhorn species.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3