Abstract
In this article, we investigate a bias in an asymptotic expansion of the simulated maximum likelihood estimator introduced by Lerman and Manski (pp. 305–319 in C. Manski and D. McFadden (eds.), Structural Analysis of Discrete Data with Econometric Applications, Cambridge: MIT Press, 1981) for the estimation of discrete choice models. This bias occurs due to the nonlinearity of the derivatives of the log likelihood function and the statistically independent simulation errors of the choice probabilities across observations. This bias can be the dominating bias in an asymptotic expansion of the simulated maximum likelihood estimator when the number of simulated random variables per observation does not increase at least as fast as the sample size. The properly normalized simulated maximum likelihood estimator even has an asymptotic bias in its limiting distribution if the number of simulated random variables increases only as fast as the square root of the sample size. A bias-adjustment is introduced that can reduce the bias. Some Monte Carlo experiments have demonstrated the usefulness of the bias-adjustment procedure.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献