Biases in the Maximum Simulated Likelihood Estimation of the Mixed Logit Model

Author:

Jumamyradov Maksat1,Munkin Murat1ORCID,Greene William H.1,Craig Benjamin M.1

Affiliation:

1. Department of Economics, University of South Florida, Tampa, FL 33620, USA

Abstract

In a recent study, it was demonstrated that the maximum simulated likelihood (MSL) estimator produces significant biases when applied to the bivariate normal and bivariate Poisson-lognormal models. The study’s conclusion suggests that similar biases could be present in other models generated by correlated bivariate normal structures, which include several commonly used specifications of the mixed logit (MIXL) models. This paper conducts a simulation study analyzing the MSL estimation of the error components (EC) MIXL. We find that the MSL estimator produces significant biases in the estimated parameters. The problem becomes worse when the true value of the variance parameter is small and the correlation parameter is large in magnitude. In some cases, the biases in the estimated marginal effects are as large as 12% of the true values. These biases are largely invariant to increases in the number of Halton draws.

Publisher

MDPI AG

Reference38 articles.

1. Reducing simulation bias in mixed logit model estimation;Bastin;Journal of Choice Modelling,2010

2. Estimation of travel choice models with randomly distributed values of time;Bolduc;Transportation Research Record,1993

3. Accommodating flexible substitution patterns in multidimensional choice modeling: Formulation and application to travel mode and departure time choice;Bhat;Transportation Research Part B: Methodological,1998

4. Incorporating observed and unobserved heterogeneity in urban work travel mode choice modeling;Bhat;Transportation Science,2000

5. Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model;Bhat;Transportation Research Part B: Methodological,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3