Abstract
This paper considers unit root tests based on M estimators. The asymptotic theory for these tests is developed. It is shown how the asymptotic distributions of the tests depend on nuisance parameters and how tests can be constructed that are invariant to these parameters. It is also shown that a particular linear combination of a unit root test based on the ordinary least-squares (OLS) estimator and on an M estimator converges to a normal random variate. The interpretation of this result is discussed. A simulation experiment is described, illustrating the level and power of different unit root tests for several sample sizes and data generating processes. The tests based on M estimators turn out to be more powerful than the OLS-based tests if the innovations are fat-tailed.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献