Estimating winter balance and its uncertainty from direct measurements of snow depth and density on alpine glaciers

Author:

PULWICKI ALEXANDRA,FLOWERS GWENN E.ORCID,RADIĆ VALENTINA,BINGHAM DEREK

Abstract

ABSTRACTAccurately estimating winter surface mass balance on glaciers is central to assessing glacier health and predicting glacier run-off. However, measuring and modelling snow distribution is inherently difficult in mountainous terrain. Here, we explore rigorous statistical methods of estimating winter balance and its uncertainty from multiscale measurements of snow depth and density. In May 2016, we collected over 9000 manual measurements of snow depth across three glaciers in the St. Elias Mountains, Yukon, Canada. Linear regression, combined with cross-validation and Bayesian model averaging, as well as ordinary kriging are used to interpolate point-scale values to glacier-wide estimates of winter balance. Elevation and a wind-redistribution parameter exhibit the highest correlations with winter balance, but the relationship varies considerably between glaciers. A Monte Carlo analysis reveals that the interpolation itself introduces more uncertainty than the assignment of snow density or the representation of grid-scale variability. For our study glaciers, the winter balance uncertainty from all assessed sources ranges from 0.03 to 0.15 m w.e. (5–39%). Despite the challenges associated with estimating winter balance, our results are consistent with a regional-scale winter-balance gradient.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference90 articles.

1. Tangborn WV , Krimmel RM and Meier MF (1975) A comparison of glacier mass balance by glaciological, hydrological and mapping methods, South Cascade Glacier, Washington

2. The atmospheric snow-transport model: SnowDrift3D

3. Analysis of Error in the Determination of Snow Storage for Small High Arctic Basins

4. Distribution of snow accumulation on the Svartisen ice cap, Norway, assessed by a model of orographic precipitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3