An Extension of One-Dimensional Theory to Inviscid Swirling Flow through Choked Nozzles

Author:

Carpenter P W,Johannesen N H

Abstract

SummaryA method is presented for determining the swirling compressible flow through a nozzle, given conditions at a reference section. The principal assumption is that changes in the nozzle cross-sectional area are sufficiently gradual for the radial velocity component to be neglected at each section, i e, the usual assumption of one-dimensional compressible flow theory. This method is used to determine choked-flow conditions in the case where there is solid-body rotation at the throat for a range of swirl intensities with the ratio of the specific heats taking various values. Mass-flux coefficients and impulse functions are determined. Sonic surfaces, velocity profiles and other characteristics of interest are also presented. An approximate analysis valid for low swirl intensities is developed and analytical formulae are derived for most quantities of interest. The main conclusion of practical importance is that the introduction of swirl to compressible nozzle flows need not lead to a significant reduction in specific thrust. Further exploration of the possible effects of swirl on noise during the relatively short take-off and landing periods cannot therefore be ruled out on the grounds that swirl would lead to excessive thrust losses.

Publisher

Cambridge University Press (CUP)

Subject

General Engineering

Reference31 articles.

1. Reply by Author to M. King

2. Approximate solution of isentropic swirling flow through a nozzle;Mager;American Rocket Society Journal,1961

3. An analytical and experimental investigation of swirling flow in nozzles;Norton;AIAA Journal,1969

4. The output characteristics of a nozzle issuing spiralling gas flow;Gostintsev;Izv Akad Nauk SSSR, Mekh Zhidk Gaza,1969

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3