Numerical research on the mixing mechanism of lobed mixer with inlet swirl in linear radial distribution

Author:

Lei Zhijun1,Zhang Yanfeng1,Zhu Zihao1,Zhu Junqiang1

Affiliation:

1. Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, P.R. China

Abstract

A detailed numerical simulation is presented to investigate the effects of inlet swirl and its radial distribution on the mixing mechanisms of a turbofan mixer with 12 lobes, by using the commercial ANSYS CFX solver and k–ω SST model. The core-to-bypass temperature ratio and pressure ratio were set to 2.59 and 0.97, respectively, giving the Mach number of 0.66 and bypass ratio of 2.65 at mixing nozzle outlet. In the core inlet, the swirl angle was raised from 0° to 30° in a uniform or linear radial distribution manner. The inlet swirl and its radial gradient did enhance the development, interaction, and dissipation of the vortices downstream of lobed mixer, resulting in accelerating the lobed jet mixing. When the inlet swirl was less than 20°, the total pressure and thrust loss increments of lobed jet were acceptable and no more than 0.26% and 1.57%, respectively, compared with the baseline case. The results also showed that the three-dimensional separation bubble on center-body and the backflows along jet axis at the rail of center-body, resulting from the swirling flow between lobes’ trough and center-body, were the dominant sources of total pressure and thrust losses for all cases with inlet swirl. And, reasonable radial distribution of inlet swirl could inhibit the aforementioned 3D separation and backflow, and thus limited the increment of jet mixing loss favorably.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3