The Influence of the Exit Velocity Profile on the Noise of a Jet

Author:

Powell Alan

Abstract

SummaryThe noise levels of a jet issuing from a long pipe are compared with those of a jet having a square velocity profile at the exit. A subsonic noise reduction of between 2 and 5 decibels for various conditions is found for the case of the flow emerging with an approximately “turbulent pipe-flow” velocity profile for the same maximum jet velocity, but this is at the expense of a loss in thrust of a quarter. On comparison with a jet of smaller diameter which has an equal thrust for the same maximum jet velocity, it is found that the changes in noise level are rather smaller. For jets of equal diameters, the effects on the subsonic aerodynamic noise generated of a reduction of velocity gradient near the boundary are more than offset by the increased velocities necessary near the centre of the jet to obtain equal thrust. It is concluded that if the effect of differences in initial turbulence can be neglected the use of an auxiliary flow forming a comparatively thin sheath of slower moving fluid at the exit is not likely to result in large decreases in the subsonic noise level, and that a general reduction in jet velocity is more effective.Above the critical pressure larger reductions of up to 10 decibels are found. These are consistent with a delay of the onset of the self-maintained shock-produced noise.

Publisher

Cambridge University Press (CUP)

Subject

General Engineering

Reference12 articles.

1. Harrop R. (1951). Method for Designing Wind Tunnel Contractions. Journal of the Royal Aeronautical Society, 55, p 169, March 1951.

2. On the Noise Emanating from a Two-dimensional Jet above the Critical Pressure;Powell;Aeronautical Quarterly,1953

3. A Survey of Experiments on Jet Noise

4. Young A. D. and Maas J. N. (1937). The Behaviour of a Pitot Tube in a Transverse Total-pressure Gradient. R. & M. 1770, 1937.

5. Lassiter W. and Hubbard H. H. (1952). Experimental Studies of Noise from Subsonic Jets in Still Air. N.A.C.A., T.N. 2757, August 1952.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3