Role of nozzle-exit boundary layer in producing jet noise

Author:

Karon Aharon Z1ORCID,Ahuja Krishan K1

Affiliation:

1. Aerospace and Acoustics Technology Division, Aerospace, Transportation, and Advanced Systems Laboratory, Georgia Tech Research Institute, Atlanta, GA, USA

Abstract

Often the measurements from different jet noise studies, which are thought to have been acquired at or corrected to identical jet conditions, do not match when compared to each other. This study looks at the nozzle-exit boundary layer as a possible factor for these differences. The nozzle-exit boundary layer state can easily be changed depending on the design of the jet-facility or the nozzle. To this end, jet noise measurements and nozzle-exit velocity profile measurements were acquired for nozzles where the nozzle-exit boundary state was changed either by using different types of nozzles, ASME nozzles versus conical nozzles, or extensions were added to the nozzles straight section. It is shown that as the laminar boundary layer transitions to turbulent, the high-frequency jet noise is reduced. In addition, development of a novel empirical correction for these effects was attempted.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3