Characterizing human-modelled landscapes at a stationary state: a case study of Minorca, Spain

Author:

CHUST GUILLEM,DUCROT DANIELLE,RIERA JOAN LL.,PRETUS JOAN LL.

Abstract

The island of Minorca, Spain, has become a patchy mosaic landscape as a result of centuries of human-induced fragmentation. The dynamics of the landscape elements and the spatial pattern of Minorca were analysed to test whether this human-modelled landscape was at a stationary state, and, if it was the case, to see whether the system could be characterized by a particular spatial pattern. Landsat TM satellite images were processed to derive land cover classification and vegetation index maps corresponding to the years 1984 and 1992, the best compromise between null cloudiness and maximum time span. The classification was used to test the stationary state by estimating the transition matrix of land cover. The Normalized Difference Vegetation Index (NDVI) was used to analyse the spatial pattern of change at the patch level. The spatial analysis of NDVI was based on four indices: fractal dimension, number and size distribution of patches, and spatial Kappa index. Those pattern descriptors were compared with values obtained from stochastic landscape simulations. Temporal analysis showed that land cover proportions remained approximately constant over the 8-year period, although interchange amongst patches existed. This suggested that the landscape of Minorca was close to a stationary state. The study of NDVI changes revealed that the spatial structure was different from that of neutral models and presented scale invariance properties. Results from land cover transitions and from NDVI patterning suggest that the landscape of Minorca is a critical system, in the framework of the self-organized criticality hypothesis, i.e. the mosaic of patches would self-organize at the frontier of a dynamic equilibrium constituted by the balance between disturbances and successional processes.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3