COMPONENTS AND PHASES: MODELLING PROGRESSIVE HYDROTHERMAL ERUPTIONS

Author:

MCKIBBIN ROBERT,SMITH THOMASIN A.,FULLARD LUKE

Abstract

AbstractThis is a review of progress made since [R. McKibbin, “An attempt at modelling hydrothermal eruptions”, Proc. 11th New Zealand Geothermal Workshop 1989 (University of Auckland, 1989), 267–273] began development of a mathematical model for progressive hydrothermal eruptions (as distinct from “blasts”). Early work concentrated on modelling the underground process, while lately some attempts have been made to model the eruption jet and the flight and deposit of ejected material. Conceptually, the model is that of a boiling and expanding two-phase fluid rising through porous rock near the ground surface, with a vertical high-speed jet, dominated volumetrically by the gas phase, ejecting rock particles that are then deposited on the ground near the eruption site. Field observations of eruptions in progress and experimental results from a laboratory-sized model have confirmed the conceptual model. The quantitative models for all parts of the process are based on the fundamental conservation equations of motion and thermodynamics, using a continuum approximation for each of the components.

Publisher

Cambridge University Press (CUP)

Subject

Mathematics (miscellaneous)

Reference23 articles.

1. The mechanism of phreatic eruptions

2. [5] Fullard L. , “Hydrothermal eruption model in 2 and 3 dimensions”, Honours Project, Massey University, Palmerston North, New Zealand, November 2007.

3. [1] Bercich B. J. and McKibbin R. , “Modelling the development of natural hydrothermal eruptions” (corrigendum), Proceedings of the 14th New Zealand Geothermal Workshop 1992 (University of Auckland, 1992), 305–312.

4. Modelling hydrothermal eruptions;Smith;New Zealand Sci. Review,2003

5. [3] Bixley P. F. and Browne P. R. L. , “Hydrothermal eruption potential in geothermal development”, Proceedings of the 10th New Zealand Geothermal Workshop 1988 (University of Auckland, 1988), 195–198.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3