MATHEMATICAL MODELLING OF THE REMOVAL OF ORGANIC MICROPOLLUTANTS IN THE ACTIVATED SLUDGE PROCESS: A LINEAR BIODEGRADATION MODEL

Author:

NELSON MARK I.ORCID,ALQAHTANI RUBAYYI T.,HAI FAISAL I.

Abstract

Before wastewaters can be released into the environment, they must be treated to reduce the concentration of organic pollutants in the effluent stream. There is a growing concern as to whether wastewater treatment plants are able to effectively reduce the concentration of micropollutants that are also contained in their influent streams. We investigate the removal of micropollutants in treatment plants by analysing a model that includes biodegradation and sorption as the main mechanisms of micropollutant removal. For the latter a linear adsorption model is used in which adsorption only occurs onto particulates.The steady-state solutions of the model are found and their stability is determined as a function of the residence time. In the limit of infinite residence time, we show that the removal of biodegradable micropollutants is independent of the processes of adsorption and desorption. The limiting concentration can be decreased by increasing the concentration of growth-related macropollutants. Although, in principle, it is possible that the concentration of micropollutants is minimized at a finite value of the residence time, this was found not to be the case for the particular biodegradable micropollutants considered.For nonbiodegradable pollutants, we show that their removal is always optimized at a finite value of the residence time. For finite values of the residence time, we obtain a simple condition which identifies whether biodegradation is more or less efficient than adsorption as a removal mechanism. Surprisingly, we find that, for the micropollutants considered, adsorption is always more important than biodegradation, even when the micropollutant is classified as being highly biodegradable with low adsorption.

Publisher

Cambridge University Press (CUP)

Subject

Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3