A mathematical model for the activated sludge process with a sludge disintegration unit

Author:

Alsaeed Salman S.1ORCID,Nelson Mark I.1ORCID,Edwards Maureen1,Msmali Ahmed2

Affiliation:

1. School of Mathematics and Applied Statistics, University of Wollongong , Wollongong , NSW 2522 , Australia

2. Department of Mathematics, College of Science, Jazan University , Jazan , Saudi Arabia

Abstract

Abstract We develop and investigate a model for sludge production in the activated sludge process when a biological reactor is coupled to a sludge disintegration unit (SDU). The model for the biological reactor is a slimmed down version of the activated sludge model 1 in which only processes related to carbon are retained. Consequently, the death-regeneration concept is included in our model which is an improvement on almost all previous models. This provides an improved representation of the total suspended solids in the biological reactor, which is the key parameter of interest. We investigate the steady-state behaviour of this system as a function of the residence time within the biological reactor and as a function of parameters associated with the operation of the SDU. A key parameter is the sludge disintegration factor. As this parameter is increased the concentration of total suspended solids within the biological reactor decreases at the expense increasing the chemical oxygen demand in the effluent stream. The existence of a maximum acceptable chemical oxygen demand in the effluent stream therefore imposes a maximum achievable reduction in the total suspended solids. This paper improves our theoretical understanding of the utility of sludge disintegration as a means to reduce excess sludge formation. As an aside to the main thrust of our paper we investigate the common assumption that the sludge disintegration processes occur on a much shorter timescale than the biological processes. We show that the disintegration processes must be exceptional slow before the inclusion of the biological processes becomes important.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3