Ordinating tropical moth ensembles from an elevational gradient: a comparison of common methods

Author:

Brehm Gunnar,Fiedler Konrad

Abstract

The analysis of beta diversity (inter-habitat diversity) of very species-rich and incompletely sampled tropical arthropod communities requires the choice of appropriate statistical tools. The performance of the three commonly employed ordination methods, correspondence analysis (CA), detrended correspondence analysis (DCA), and non-metric multidimensional scaling (NMDS), was compared on a large empirical data set of geometrid moths sampled along an altitudinal gradient in an Andean montane rain forest. Despite the high species richness and incompleteness of the ensembles, all methods depicted the same, readily interpretable patterns. Both CA and NMDS showed an arch-like structure, which hints at an underlying coenocline, whereas this arch was computationally eliminated in DCA. For this particular data set, CA and NMDS both provided convincing results while the detrending algorithm of DCA did not improve the interpretability of the data. Of the large number of similarity indices available to be used in combination with NMDS, the binary Sørensen and the abundance-based Normalized Expected Species Shared (NESS) index were tested. Performance of the indices was measured by comparing stress, a measure of poorness-of-fit in NMDS. NMDS ordinations with lowest values of stress were achieved by the NESS index with the parameter m set to its maximum (mmax). In contrast, ordinations based on NESS values with the parameter m set to 1 (identical with Morisita's index), had consistently higher stress values and performed worse than ordinations using Sørensen's index. Hence, if high values of m can be achieved in similar data sets, the NESS index with mmax is recommended for ordination purposes and Morisita's index should be avoided.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3