Beta Diversity along an Elevational Gradient at the Pico da Neblina (Brazil): Is Spider (Arachnida-Araneae) Community Composition Congruent with the Guayana Region Elevational Zonation?

Author:

Nogueira André A.ORCID,Brescovit Antonio D.,Perbiche-Neves Gilmar,Venticinque Eduardo M.ORCID

Abstract

Beta diversity is usually high along elevational gradients. We studied a spider community at the Pico da Neblina (Brazil), an Amazonian mountain which is one of the southern components of the Guayana region. We sampled six elevations and investigated if beta diversity patterns correspond to the elevational division proposed for the region, between lowlands (up to 500 m), uplands (500 m to 1500 m), and highlands (>1500 m). Patterns of dominance increased with elevation along the gradient, especially at the two highest elevations, indicating that changes in composition may be accompanied by changes in species abundance distribution. Beta diversity recorded was very high, but the pattern observed was not in accordance with the elevationaldivision proposed for the region. While the highlands indeed harbored different fauna, the three lowest elevationshad similar species compositions, indicating that the lowlands spider community extends into the uplands zone. Other measures of compositional change, such as similarity indices and species indicator analysis, also support this pattern. Our results, in addition to a revision of the literature, confirm the high diversity and endemism rates of montane spider communities, and we stress the importance of protecting those environments, especially considering the climate crisis.

Funder

National Council for Scientific and Technological Development

Gordon and Betty Moore Foundation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3