Author:
BUENGER C. DAVIS,ZHENG CHENG
Abstract
Let$G$be a semisimple Lie group of rank one and$\unicode[STIX]{x1D6E4}$be a torsion-free discrete subgroup of$G$. We show that in$G/\unicode[STIX]{x1D6E4}$, given$\unicode[STIX]{x1D716}>0$, any trajectory of a unipotent flow remains in the set of points with injectivity radius larger than$\unicode[STIX]{x1D6FF}$for a$1-\unicode[STIX]{x1D716}$proportion of the time, for some$\unicode[STIX]{x1D6FF}>0$. The result also holds for any finitely generated discrete subgroup$\unicode[STIX]{x1D6E4}$and this generalizes Dani’s quantitative non-divergence theorem [On orbits of unipotent flows on homogeneous spaces.Ergod. Th. & Dynam. Sys.4(1) (1984), 25–34] for lattices of rank-one semisimple groups. Furthermore, for a fixed$\unicode[STIX]{x1D716}>0$, there exists an injectivity radius$\unicode[STIX]{x1D6FF}$such that, for any unipotent trajectory$\{u_{t}g\unicode[STIX]{x1D6E4}\}_{t\in [0,T]}$, either it spends at least a$1-\unicode[STIX]{x1D716}$proportion of the time in the set with injectivity radius larger than$\unicode[STIX]{x1D6FF}$, for all large$T>0$, or there exists a$\{u_{t}\}_{t\in \mathbb{R}}$-normalized abelian subgroup$L$of$G$which intersects$g\unicode[STIX]{x1D6E4}g^{-1}$in a small covolume lattice. We also extend these results to when$G$is the product of rank-one semisimple groups and$\unicode[STIX]{x1D6E4}$a discrete subgroup of$G$whose projection onto each non-trivial factor is torsion free.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference10 articles.
1. Flows on Homogeneous Spaces and Diophantine Approximation on Manifolds
2. On orbits of unipotent flows on homogeneous spaces, II;Dani;Ergod. Th. and Dynam. Sys.,1986
3. Limit distributions of orbits of unipotent flows and values of quadratic forms;Dani;Adv. Sov. Math.,1993
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献