Affiliation:
1. Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, PR China
Abstract
Abstract
Let $U$ be a horospherical subgroup of a noncompact simple Lie group $H$ and let $A$ be a maximal split torus in the normalizer of $U$. We define the expanding cone $A_U^+$ in $A$ with respect to $U$ and show that it can be explicitly calculated. We prove several dynamical results for translations of $U$-slices by elements of $A_U^+$ on a finite volume homogeneous space $G/\Gamma $ where $G$ is a Lie group containing $H$. More precisely, we prove quantitative nonescape of mass and equidistribution of a $U$-slice. If $H$ is a normal subgroup of $G$ and the $H$ action on $G/\Gamma $ has a spectral gap, we prove effective multiple equidistribution and pointwise equidistribution with an error rate. In this paper, we formulate the notion of the expanding cone and prove the dynamical results above in the more general setting where $H$ is a semisimple Lie group without compact factors. In the appendix, joint with Rene Rühr, we prove a multiple ergodic theorem with an error rate.
Funder
National Natural Science Foundation of China
National Science Foundation
Publisher
Oxford University Press (OUP)
Reference36 articles.
1. Random walks on finite volume homogeneous spaces;Benoist;Invent. Math.,2012
2. Khintchine type theorems on manifolds: the convergence case for standard multiplicative versions, Internat;Bernik;Math. Res. Notices,2001
3. Sous-groupes épimorphiques de groupes linéaires algébriques I;Bien;C. R. Acad. Sci. Paris Sér. I Math.,1992
4. Linear Algebraic Groups
5. Compléments à l’article: ‘Groupes réductifs’;Borel;Inst. Hautes Études Sci. Publ. Math.,1972
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献