Abstract
AbstractThe squiral inflation rule is equivalent to a bijective block substitution rule and leads to an interesting lattice dynamical system under the action of${ \mathbb{Z} }^{2} $. In particular, its balanced version has purely singular continuous diffraction. The dynamical spectrum is of mixed type, with pure point and singular continuous components. We present a constructive proof that admits a generalization to bijective block substitutions of trivial height on${ \mathbb{Z} }^{d} $.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献