Self-similarity and spectral theory: on the spectrum of substitutions

Author:

Bufetov A.,Solomyak B.

Abstract

This survey of the spectral properties of substitution dynamical systems is devoted to primitive aperiodic substitutions and associated dynamical systems: Z \mathbb {Z} -actions and R \mathbb {R} -actions, the latter viewed as tiling flows. The focus is on the continuous part of the spectrum. For Z \mathbb {Z} -actions the maximal spectral type can be represented in terms of matrix Riesz products, whereas for tiling flows, the local dimension of the spectral measure is governed by the spectral cocycle. References are given to complete proofs and emphasize ideas and various links.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference129 articles.

1. A new class of rank-one transformations with singular spectrum;El Abdalaoui, El Houcein;Ergodic Theory Dynam. Systems,2007

2. \bysame, On the Mahler measure of the spectrum of rank one maps, preprint, arXiv:2108.13416.

3. Calculus of generalized Riesz products;el Abdalaoui, e. H.,2015

4. Symbolic discrepancy and self-similar dynamics;Adamczewski, Boris;Ann. Inst. Fourier (Grenoble),2004

5. On the Pisot substitution conjecture;Akiyama, S.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3