A good universal weight for nonconventional ergodic averages in norm

Author:

ASSANI IDRIS,MOORE RYO

Abstract

We will show that the sequence appearing in the double recurrence theorem is a good universal weight for the Furstenberg averages. That is, given a system$(X,{\mathcal{F}},\unicode[STIX]{x1D707},T)$and bounded functions$f_{1},f_{2}\in L^{\infty }(\unicode[STIX]{x1D707})$, there exists a set of full-measure$X_{f_{1},f_{2}}$in$X$that is independent of integers$a$and$b$and a positive integer$k$such that, for all$x\in X_{f_{1},f_{2}}$, for every other measure-preserving system$(Y,{\mathcal{G}},\unicode[STIX]{x1D708},S)$and for each bounded and measurable function$g_{1},\ldots ,g_{k}\in L^{\infty }(\unicode[STIX]{x1D708})$, the averages$$\begin{eqnarray}\frac{1}{N}\mathop{\sum }_{n=1}^{N}f_{1}(T^{an}x)f_{2}(T^{bn}x)g_{1}\circ S^{n}g_{2}\circ S^{2n}\cdots g_{k}\circ S^{kn}\end{eqnarray}$$converge in$L^{2}(\unicode[STIX]{x1D708})$.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. Linear Sequences and Weighted Ergodic Theorems

2. [6] I. Assani and R. Moore . Extension of Wiener–Wintner double recurrence theorem to polynomials. Available on http://www.unc.edu/math/Faculty/assani/WWDR_poly_final_abSept19.pdf, submitted, 2014.

3. Double recurrence and almost sure convergence;Bourgain;J. Reine Angew. Math.,1990

4. A new proof of Szemerédi's theorem

5. Pointwise characteristic factors for the multiterm return times theorem

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multilinear Wiener-Wintner type ergodic averages and its application;Discrete and Continuous Dynamical Systems;2024

2. Extension of Wiener-Wintner double recurrence theorem to polynomials;Journal d'Analyse Mathématique;2018-02

3. Automatic sequences as good weights for ergodic theorems;Discrete & Continuous Dynamical Systems - A;2018

4. Weighted multiple ergodic averages and correlation sequences;Ergodic Theory and Dynamical Systems;2016-07-04

5. A good universal weight for nonconventional ergodic averages in norm;Ergodic Theory and Dynamical Systems;2015-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3