Inhibition of the calcineurin-like protein phosphatase activity in Limulus ventral eye photoreceptor cells alters the characteristics of the spontaneous quantal bumps and the light-mediated inward currents, and enhances arrestin phosphorylation

Author:

KASS LEONARD,ELLIS DORETTE Z.,PELLETIER JANICE,TABLEMAN NATHAN E.,EDWARDS SAMUEL C.

Abstract

Changes in intracellular calcium are involved in phototransduction processes in both vertebrate and invertebrate photoreceptors. During this phototransduction process in the Limulus ventral eye, there is a biochemical change in the protein phosphatase, calcineurin, such that it becomes capable of activation by calcium and calmodulin. Here we show that the calcium/calmodulin-dependent calcineurin-like activity in light-adapted ventral eye was completely inhibited by the CaN autoinhibitory peptide, CaN A457–482 and the Merck analog of the membrane-permeable, immunosuppressant drug, FK 506, L-683, 590, but not an inactive analogue, L-685, 818. Whole-cell, voltage-clamp recordings of spontaneous quantal bump activity present in dark-adapted photoreceptors injected with either CaN A457–482 (500 μM) or superfused with L-683, 590 (20 μM) or L-685, 818 revealed that both CaN A457–482 and L-683, 590, but not L-685, 818, caused rapid decreases in quantal bump amplitude, rise time and fall time, resulting in smaller, sharper bumps. This was correlated with enhanced phosphorylation of arrestin in light-adapted ventral eye photoreceptors exposed to L-683, 590 or less reliably okadaic acid. Both CaN A457–482 and L-683, 590 markedly affected the light-stimulated inward currents recorded from light-adapted ventral photoreceptors, causing a “terracing” of the inward current, and an intensity-dependent delay in the time required to reach peak amplitude. Consequently, inhibition of calcineurin markedly affects two major rhodopsin-dependent electrophysiological processes, and implicates CaN as an integral component in the phototransduction cascade.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3