PP1 Inhibitors Depolarize HermissendaPhotoreceptors and Reduce K+ Currents

Author:

Huang Haojiang1,Farley Joseph1

Affiliation:

1. Neural Science, Indiana University, Bloomington, Indiana 47405-7007

Abstract

Previous research indicates that activation of protein kinase C (PKC) plays a critical role in the induction and maintenance of memory-related changes in neural excitability of Type B photoreceptors in the eyes of nudibranch mollusk Hermissenda crassicornis (H.c.). The enhanced excitability of B cells is due in part to PKC-mediated reduction in somatic K+ currents. Here we examined the effects of protein phosphatase inhibitors on Type B photoreceptor excitability and K+ currents to determine the role(s) of protein phosphatases on memory formation in Hermissenda. Using electrophysiological and pharmacological methods, we found that the PP1 inhibitors calyculin A and inhibitor-2 depolarized Type B photoreceptors by 20–30 mV. A broad-spectrum kinase inhibitor, H7, blocked this effect. The depolarization induced by PP1 inhibition occluded that produced by an in vitro associative conditioning procedure. Calyculin and inhibitor-2 reduced the same B cell K+ currents ( I Aand I delayed) that are reduced by in vitro and behavioral conditioning. H7 blocked the reductions. Cantharidic acid (PP2A inhibitor) and cyclosporin (PP2B inhibitor) had negligible effects on B cell resting membrane potential, K+ currents, and in vitro conditioning-produced cumulative depolarization of B cells. These results suggest that the functional activity of K+ channels in B cells is sustained by basal activity of PP1. Inhibiting PP1 appears to allow one or more constitutively active kinase(s) to reduce K+ channel activity and thus mimic the effects of conditioning. Our results suggest that PP1 may oppose and/or constrain the extent of learning-produced changes in B cell excitability.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3