Complex motion selectivity in PMLS cortex following early lesions of primary visual cortex in the cat

Author:

OUELLETTE B.G.,MINVILLE K.,BOIRE D.,PTITO M.,CASANOVA C.

Abstract

In the cat, the analysis of visual motion cues has generally been attributed to the posteromedial lateral suprasylvian cortex (PMLS) (Toyama et al., 1985; Rauschecker et al., 1987; Rauschecker, 1988; Kim et al., 1997). The responses of neurons in this area are not critically dependent on inputs from the primary visual cortex (VC), as lesions of VC leave neuronal response properties in PMLS relatively unchanged (Spear & Baumann, 1979; Spear, 1988; Guido et al., 1990b). However, previous studies have used a limited range of visual stimuli. In this study, we assessed whether neurons in PMLS cortex remained direction-selective to complex motion stimuli following a lesion of VC, particularly to complex random dot kinematograms (RDKs). Unilateral aspiration of VC was performed on post-natal days 7–9. Single unit extracellular recordings were performed one year later in the ipsilateral PMLS cortex. As in previous studies, a reduction in the percentage of direction selective neurons was observed with drifting sinewave gratings. We report a previously unobserved phenomenon with sinewave gratings, in which there is a greater modulation of firing rate at the temporal frequency of the stimulus in animals with a lesion of VC, suggesting an increased segregation of ON and OFF sub-regions. A significant portion of neurons in PMLS cortex were direction selective to simple (16/18) and complex (11/16) RDKs. However, the strength of direction selectivity to both stimuli was reduced as compared to normals. The data suggest that complex motion processing is still present, albeit reduced, in PMLS cortex despite the removal of VC input. The complex RDK motion selectivity is consistent with both geniculo-cortical and extra-geniculate thalamo-cortical pathways in residual direction encoding.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3