Plasticity following neonatal visual cortex damage in cats

Author:

Spear Peter D.

Abstract

We have used the cat visual system as a model system to investigate how remaining areas of the brain are able to take over functions that are lost following brain damage and why neonates show better behavioral recovery than adults. Anatomical studies with both anterograde and retrograde tracing methods reveal an increased projection from retina through thalamus to the posteromedial lateral suprasylvian (PMLS) extrastriate visual area of cortex in the damaged hemisphere of cats with a neonatal visual cortex (areas 17, 18, and 19; VC) lesion. No such enhanced projection is seen after an adult lesion. In addition, single-cell neurophysiological studies indicate that physiological compensation is present in PMLS cortex after a neonatal VC lesion but not after an adult lesion. The physiological compensation replaces (or maintains) properties that are characteristic of PMLS neurons; there is little or no improvement to replace the superior spatial properties of striate cortex (or areas 18 or 19) neurons that were lost. Immunohistochemical studies of the possible roles of neuronal growth factors in the compensation indicate that low- and high-affinity receptors are present that would allow several neurotrophins to influence the normal retina throughout life. Furthermore, these receptors are upregulated transneuronally following neonatal VC damage and thus could play a role in lesion-induced changes in the retina and its central projections. Ongoing studies are continuing to examine the presence of neurotrophins and their receptors in the retina and brain during normal development and after VC damage. In addition, studies of the effects of administering neuronal growth factors are underway to determine whether compensation for VC damage can be improved in neonates or even be produced in adults.Key words: visual cortex, neural plasticity, brain damage, neurotrophic substances, neonatal lesion.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3