Evaluation of the power deficit of elderly people during stair negotiation: Which joints should be assisted at least by an exoskeleton and with what amount?

Author:

Böhme MaxORCID,Weiske Felix,Jäkel Jens,Zentner Johannes,Witt Maren

Abstract

Abstract Climbing stairs can become a daily obstacle for elderly people, and an exoskeleton can assist here. However, the exoskeletons that are designed to assist stair climbing are actuated in different ways. To find a minimal actuation configuration, we identify the assist phases by evaluating the power deficit of 11 healthy but weak elderly people (72.4 ± 2.1 years; 69–76 years; 1.67 ± 0.10 m; 74.88 ± 14.54 kg) compared to 13 younger people (24.0 ± 1.8 years; 22–28 years; 1.74 ± 0.10 m; 70.85 ± 11.91 kg) in a biomechanical study and discuss moment characteristics. Three-dimensional kinematics and ground reaction forces were collected, and kinematics, kinetics, and power characteristics of each subject for ascent and descent were calculated using inverse dynamics. Significant differences for power between both groups were assessed with statistical parametric mapping method using dynamic time warping. During ascent, the largest significant power deficit of the elderly subjects occurs in the single stance phase (SSP) during pull-up in the knee joint. During descent, significant mean power deficits of 0.2 and 0.8 W/kg for the highest deficit occur in the ankle joint in the beginning of the SSP and also in the knee joint in the same phase. Therefore, an exoskeleton should address the power deficit for knee extension (ascent: 1.0 ± 0.9 W/kg; descent: 0.3 ± 0.2 W/kg) and could assist the ankle during ascent and descent by an additional plantar flexion moment of 0.2 Nm/kg each.

Funder

European Social Fund

Publisher

Cambridge University Press (CUP)

Reference52 articles.

1. Muscle recruitment by the min/max criterion — a comparative numerical study

2. A review of the physical demands of stair negotiation in healthy aging and following stroke;Ridgway;Physical Medicine and Rehabilitation—International,2015

3. Mechanical energy transfers across lower limb segments during stair ascent and descent in young and healthy older adults

4. Pataky, TC (2021) spm1d (Version 0.4.2) [Computer Software]. Available at https://spm1d.org/

5. Designing of a Passive Knee-Assisting Exoskeleton for Weight-Bearing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3