Interaction effects on the conversion corridor of tiltrotor aircraft

Author:

Appleton W.ORCID,Filippone A.ORCID,Bojdo N.ORCID

Abstract

AbstractThis paper presents an aeromechanics investigation of tiltrotor aircraft through the conversion regime of flight. The effects of the rotors-on-wing, rotors-on-empennage and wing-on-empennage interactions were investigated singularly and collectively to assess their impacts on trim behaviour, performance and conversion boundaries. The rotors-on-wing download was found to be dominant in the prediction of hover and low-speed flight performance and had a degrading effect overall. The fuselage pitch attitude and stick position were found to be significantly affected by the empennage interaction cases throughout the conversion domain. The large flap/flaperon settings used to alleviate the rotor download contributed considerably to the low-speed trim behaviour. The conversion boundaries were found to be insensitive to all the interaction cases, though the min-speed boundary was reduced marginally due to the wing-on-empennage interaction. The results showed that the combined interactions were important factors to accurately predict the trim behaviour and aircraft performance throughout the conversion corridor.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference44 articles.

1. 14. Diaz, S. , Mouterde, E. and Desopper, A. Performance code for take-off and landing tilt-rotor procedures study,. 30th European Rotorcraft Forum, Marseille, 2004.

2. 15. Marr, R. , Sambell, K. and Neal, G. V/STOL tilt rotor study. Volume 6: Hover, low speed and conversion tests of a tilt rotor aeroelastic model, NASA CR 114615, 1973.

3. Download and Rotor Installed Performance In Hover and Low Advance Ratio Flight

4. Tilt rotor aeromechanics phenomena in low speed flight

5. 25. Potsdam, M. and Strawn, R. CFD simulations of tiltrotor configurations in hover, American Helicopter Society 58th Annual Forum, Montreal, 2002.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3