Effect of fuels, aromatics and preparation methods on seal swell

Author:

Anuar A.,Undavalli V.K.ORCID,Khandelwal B.ORCID,Blakey S.

Abstract

AbstractNew alternative jet fuels have provided many advantages in the aviation industry, especially in terms of economics and environment. However, fuel–seal compatibility is one of the major issues that restricts alternative fuel advancement into the market. Thus, to help understand and solve the problem, this study examines the swelling effect of prepared and non-prepared O-rings in different fuels and aromatic species. Stress relaxation experiments were carried out to evaluate seal compatibility under compression, which mimics engine operation conditions. Seals were compressed and immersed in a variety of fuels and their blends for about 90h while maintaining a constant temperature 30°C and constant compression force of 25% seal thickness. The two types of elastomers investigated were fluorosilicone and nitrile O-rings, which are predominantly used in the aviation industry. Meanwhile, three different fuels and aromatic species were utilised as the variables in the experiments. The fuels used were Jet-A1, SPK and SHJFCS, while the aromatic species added were propyl benzene, tetralin and p-xylene. The swelling effects were determined from the P/Po value. Results indicate that Jet-A1 has the highest swelling effect, followed by SHJFCS and SPK. It was observed that the higher the percentage of aromatics in fuel, the higher the rate of swelling. Furthermore, prepared seals had a lower swelling rate than did non-prepared seals. Meanwhile, the intensity of the swelling effect in the Jet-A1-SHJFCS blends was in the order of 60/40, 85/15 and 50/50 blend. The work done in this study will aid in the selection of suitable aromatic species in future fuels. The novelty of this research lies in the determination of the appropriate amount of aromatic content as well as the selection of type of aromatic and its mixture fuel. Moreover, the various proportions of fuel blends with aromatic are investigated. The primary aim of this study is to understand the behaviour of prepared and non-prepared seals, and their compatibility with alternative fuels.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3