Abstract
The model K() presented in this paper is a new inner model of ZFC which can contain measurable cardinals of high order. Like the model L() of [14], from which it is derived, K() is constructed from a sequence of filters such that K() satisfies for each (α, β) ε domain () that (α,β) is a measure of order β on α and the only measures in K() are the measures (α,β). Furthermore K(), like L(), has many of the basic properties of L: the GCH and ⃟ hold and there is a definable well ordering which is on the reals. The model K() is derived from L() by using techniques of Dodd and Jensen [2–5] to build in absoluteness for measurability and related properties.
Publisher
Cambridge University Press (CUP)
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献