Abstract
AbstractThe unknotting number of a knot is bounded from below by its slice genus. It is a well-known fact that the genera and unknotting numbers of torus knots coincide. In this paper we characterize quasipositive knots for which the genus bound is sharp: the slice genus of a quasipositive knot equals its unknotting number, if and only if the given knot appears in an unknotting sequence of a torus knot.
Publisher
Cambridge University Press (CUP)
Reference14 articles.
1. Le problème de J. Milnor sur le nombre gordien des nœuds algébriques;Boileau;Enseign. Math.,1984
2. Slice and Gordian numbers of track knots;Baader;Osaka J. Math.,2005
3. [10] Rolfsen D. Knots and Links (Publish or Perish, 1976).
4. Quasipositivity as an obstruction to sliceness
5. Quasi-positivité d'une courbe analytique dans une boule pseudo-convexe
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Signature invariants related to the unknotting number;Pacific Journal of Mathematics;2020-03-17
2. The four-genus of connected sums of torus knots;Mathematical Proceedings of the Cambridge Philosophical Society;2017-04-17
3. The ϒ function ofL–space knots is a Legendre transform;Mathematical Proceedings of the Cambridge Philosophical Society;2017-03-20
4. Gordian adjacency for torus knots;Algebraic & Geometric Topology;2014-01-30
5. The minimal genus problem in ℂℙ2#ℂℙ2;Algebraic & Geometric Topology;2014-01-30